
No. of Printed Pages : 16

GREEN GARDEN MATRIC. HR. SEC. SCHOOL Perundurai R.S. PH: 9486379461, 8344933377

பதிவு எண்

Register Number

XII - MARCH 2020

PART - III

கணிதம் / MATHEMATICS

(தமிழ் மற்றும் ஆங்கில வழி / Tamil & English Version) [மொத்த மதிப்பெண்கள் : 90 கால அளவு : 3.00 மணி நேரம்] [Maximum Marks : 90 Time Allowed : 3.00 Hours] அனைத்து வினாக்களும் சரியாகப் பதிவாகி உள்ளதா என்பதனைச் அறிவுரைகள் : (1) ு சரிபார்த்துக் கொள்ளவும். அச்சுப்பதிவில் குறையிருப்பின், அறைக் கண்காணிப்பாளரிடம் உடனடியாகத் தெரிவிக்கவும். (2) நீலம் அல்லது கருப்பு மையினை மட்டுமே எழுதுவதற்கும், அடிகோடிடுவதற்கும் பயன்படுத்த வேண்டும். படங்கள் வரைவதற்கு பென்சில் பயன்படுத்தவும். கைக்கது பல்தல் இருக்கல் இருக்கும் இன்றைகள் கண்டுக்குக்கு குண்டு . 41 (1) Check the question paper for fairness of printing. If there is any lack of Instructions : fairness, inform the Hall Supervisor immediately. (2) Use Blue or Black ink to write and underline and pencil to draw diagrams. almon in Altours (2) in distinct cools show visitify $a \in \{k\}$ பகுதி – I / PART - I 10 m .8 MA LORE & MALE அனைத்து வினாக்களுக்கும் விடையளிக்கவும். இடைக்கு இரு 20x1=20 குறிப்பு : (i) கொடுக்கப்பட்டுள்ள மாற்று விடைகளில் மிகவும் ஏற்புடைய விடையைத் தேர்ந்தெடுத்துக் குறியீட்டுடன் விடையினையும் சேர்த்து (ii) ១ ៣៥ថ្ងៃថា ទោះ ប្រទះ ខេត្តនេះទោះ ស្ថាន All questions are compulsory. i nine sup in a cal bits initiality i (i) Note : Choose the most appropriate answer from the given four alternatives and write the option code and the corresponding answer. (ii) [திருப்புக / Turn over

	1.		^{2+y2} எனி	. du	÷fl							
1.				0		-4.				(4)	x ² u	
	(1)	y^2 u		(2)	$e^{x^2+y^2}$		(3)	2xu		(4)	1-u	
	If u((x, y) =	$e^{x^2+y^2}$, the	$\frac{\partial u}{\partial r}$	is equal t	to:					3	
		y^2 u		(2)	$e^{x^2+y^2}$		(3)	2xu		(4)	x ² u	
2.	കരി	க்கவில	ன் அடைவ	ப்பன்	ாபு பெறா	த கண	: ف		i - Fight			
<u>.</u> .	(1)	ېرو م		(2)	R		(3)	\mathbb{Z}		(4)	\mathbb{N}	
			n is not a l	• •	045/11	in:			an (1911-1911)			
	(1)	Q		(2)	\mathbb{R}		(3)	\mathbb{Z}		(4)	\mathbb{N}	
	()	2		line -						16. 		
	π	1 .	-11.	~ •						ļ1		
3.	Jsir	$h^{+}x dx$	-இன் ம	别山口:								
	0	3π		(0)	3π		(3)	$\frac{3\pi}{8}$		(4)	$\frac{3\pi}{4}$,
	(1)	2	194 J.V.	(2)	10		(0)	8		()	4	
			$\int_{0}^{\pi} \sin^4 x$	dr :		1						
	The	value	of $\int_{0}^{\pi} \sin^{4}x$	ux 15:				 Bytes 			2-	
			Ŭ				(3)	$\frac{3\pi}{8}$		(4)	$\frac{3\pi}{4}$	
		-						U			т	
		•	ள ஒரு பல	່າວາາຫາ	யக்கோ	வைச் சட	மன்ப	ாடு பெ	ற்றுள்ள டூ	ழலங்	கள் :	
4.		டியுள	ள ஒரு பல	ு குறியாட பில் கிறை	140,000.0	(2)	n G	ລາລ່ີເດີ	று மூலங்	பகள்		1.4
	(1)	enne	ாக n மூல மய்யெண்	al DODIE	கள்	(4)			ன் மூலங்			
	(3)	n 61	nial equation	on of d			nas :		a 14 -	3		
		exact	ly n roots		0	(-)		stinct ro				
	(1) (3)	n rea	l roots			(4)		naginary				
	()		. B]) எனி		D aria	ு நேரி	பச்சு	ன்பாடு	களின் 🕼	தொகு	ப்பான	து :
5.	ρ(Α)	=ρ([A	. B]) எனி	ລ, AX	= D 61 601	ற ஹாம			Sec. Mar.			
	(1)	ஒரு	ப்கமைவற்	ற்றது	• • • •	<u>_</u> Ст 6		ர்வ டெ	ற்றிருக்கு	தம்		
	(2)	ஒருா	ங்கமைவற ங்கமைவு	டையத	ு மற்றும	ଜିତ୍ରା ବ	ይጠ ይ					
	(3)	ஒரு	ங்கமைவுல	തല്പള	لۇ • •	- in a	πŵm	சீர்வகள்	ா பெற்றி	ிருக்கு	நம்	
	(4)	ஒரு	പടന്നെ പ്രം പടന്നെ പ്രം	லடயத	ு மற்றும	X - B of	າມມ Iinea	r equati	ons is :	00		
		$A) = \rho($	പക്കഥഖും [A B]), the	en the s	system A	X-001					2. (1)	a l
	(1)	incor	sistent stent and l	has a u	inique so	lution					r .	
	(2) (3)		shamt									
	(4)	consi	stent and I	has inf	initely m	any solu	ations					
	• /											
B	mal) Shiri										
						C C	GREF	N GAR	DEN MA	ATRI(C. HR.	SEC

6.	$x^2 =$	8y—1 என்	ற பரவளை	ாயத்தின் மு	<u>എ</u> ഞ്ഞ :	i narec		2- 9281P	9.34	11. YY		
	(1)	$\left(0,-\frac{1}{8}\right)$	(2)	$\left(-\frac{1}{2},0\right)$) <mark>- </mark> Sa	(3)	$\left(\frac{1}{8},0\right)$		(4)	$\left(0,\frac{1}{8}\right)$	Saler See	
		vertex of th										
	Inc	$\left(0,-\frac{1}{8}\right)$	ie paraeta	(1))	(2)	$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$		(4)	$\left(0,\frac{1}{2}\right)$		
	(1)	$(0, -\frac{1}{8})$	(2)	(- 8, 0) alter of	(3)	$\left(\overline{8}, 0\right)$	afremalet antes are	(4)	(* 8)	i la	
			-			- Li List				je koj	2.2.2	ж. ²
7.	sin	$x + \sin^{-1} y$	= $\frac{2\pi}{3};$ எ	னில் cos ^{−1}	$x + \cos^{-1}$	⁻¹ y ต	ன்பதன்	மதிப்பு	:			
	(1)	π	(2)	$\frac{2\pi}{2\pi}$		(3)	π		(4)	$\frac{\pi}{2}$	1	
	(1)								a Lilliga	0		
	If si	$\sin^{-1}x + \sin^{-1}x$	$^{1}y = \frac{2\pi}{3}; t$	hen cos ⁻¹ .	$x + \cos^{-1}$	⁻¹ y is	equal to :	0.1			1	
	(1)	π υση	(2)	<u>2π</u>	73	(3)	π		(4)	$\frac{\pi}{6}$		
	(1)	ch Gurt	(-)	3			3	21 24.07	37 - 37 L	o at fi	Starth	
_	13	·n · ·n-1)	ன் மரிப்ப	1947 U. J.				1.01			4.85	
8.	$\sum_{i=1}^{n}$	$i^{n} + i^{n-1}$) -	ം നഉവപ്പ			-1			" 13 2010		- 1 ⁰ -1	
	(1)	0	(2)	1+i	80 (f	(3)	i	in de Ane	(4)	1.		
	The	value of $\sum_{i=1}^{13}$	$(i^n + i^{n-1})$	is :	1							
	(1)	<i>i</i> =1	(2)	1+i		(3)	i		(4)	1	/res.	\$ 2.
							indu"				£.,	
9.	\rightarrow	$s\hat{i} + t\hat{j}$ (இங்கு s, t	ൺപതെ	ച ച്ചതെ	ாயல	குகள்) எ	ன்ற ,சடி	ன்யா(թ : _{որ} ,,	111	
	(1)		۵ O	V		18						
		-	· · · · · · · · ·	0 mmt		ர்சோ	س					
	(2)		ியவற்றை		து ஆ	in com						
	(3)	xoy தளம்										
	(4)	yoz தளம்		<i>1</i> .,								
	→ r =	$\hat{s}i + t\hat{j}is$	s the equati	on of (s, t	are par	amete	ers):					
	(1)	zox plane	- 1		1	s. :						
	(2)	a straight]	line joining	the points	\hat{i} and	1 ĵ						
	(3)	xoy plane	23									
	(4)	yoz plane			Same	1,						
B									[திர	ரப்புக	/ Turr	over
									Certain C. C.C.			

- மையம் (h, k) மற்றும் ஆரம் 'a' கொண்ட எல்லா வட்டங்களின் வகைக்கெழுச் 10. சமன்பாட்டின் வரிசை (இங்கு h, k, a ஆகியவை மாறத்தக்க மாறிலிகள் அல்லது ஏதேச்சையான மாறிலிகள்).
 - (4)(3)(1)1 (2)2

The order of the differential equation of all circles with centre at (h, k) and radius 'a', where h, k and a are arbitrary constants, is :

- (2) $\frac{2}{100}$ (3) $\frac{3}{100}$ (3)(4) 4 (1)1
- arg(0) -ன் மதிப்பு : 11.
 - $\frac{\pi^2}{\epsilon} = \frac{\pi^2}{\epsilon}$ (1)8 வரையறுக்கப்படவில்லை (4) (3)π

arg(0) is :

- (1)8
- (4) undefined (3)π The value of $\sum_{i=1}^{n} | f_i^{(i)} + f_i^{(i-1)} | |_{\mathcal{A}}$ is

(2)

0

- $\tan^{-1}\left(\frac{1}{4}\right) + \tan^{-1}\left(\frac{2}{6}\right) =$ 12.
 - $\tan^{-1}\left(\frac{1}{2}\right)$, (2) $\frac{1}{2}\cos^{-1}\left(\frac{3}{5}\right)$ (1)
 - (3) $\frac{1}{2}\sin^{-1}\left(\frac{3}{5}\right)$ (4) $\frac{1}{2}\tan^{-1}\left(\frac{3}{5}\right)$ (3)
 - $\tan^{-1}\left(\frac{1}{4}\right) + \tan^{-1}\left(\frac{2}{9}\right)$ is: ngenne energiene i stere te baster after i 🖓 🚽 🍡
 - $\tan^{-1}\left(\frac{1}{2}\right)$ (2) $\frac{1}{2}\cos^{-1}\left(\frac{3}{5}\right)$ (1) a standar bin bining a (3) $\frac{1}{2}\sin^{-1}\left(\frac{3}{5}\right)$ (4) $\frac{1}{2}\tan^{-1}\left(\frac{3}{5}\right)$

B. mail (and other

GREEN GARDEN MATRIC. HR. SEC. SCHOOL Perundurai R.S. PH: 9486379461, 8344933377

4

willow the of the MA

(1)

EL

						<u>.</u>		212	21-8 CT	алн	
13.	t என்ற கால	த்தில் கிடைப	மட்டமா	க நகருட	ற் துக	ளின் ந	തെ ട(t) =	= 51	21-0 81		
	கொடுக்கப்ப	ட்டுள்ளது. து	கள் ஒய்	ഖ്വ நിരൈ	லக்கு எ	பரும்	நேரம் :			1	
									4-1		
	(1) $t=3$	(2)	t = 0		(3)	$t = \frac{1}{3}$		(4)	1-1		
	The position	of a particle	moving	along a	horizo	ntal lin	ne of any	time t	is given	ı by	
	$s(t) = 3t^2 - 2t - 2t$	-8. The time	at which	the part	ticle is	at rest,	is:				
	5(1) 01 11			a intera Lanco	1	1	1210	1	Lat mark	14	
	(1) $t = 3$	(2)	t=0	and a second	(3)	$t = \frac{1}{3}$	27 1000	(4)	t=1	1. 24	
						0					
	1×10^{-1}		13,27			1 2		். சிக்	N . 11		
14.	100 m ² பரப்ப	பள <mark>வு கொ</mark> ண்	്പ പ്രക്ഷ	ഖகத்தில்	ព យំ៩៩	று சுற	ഇണഖ്യ (ധ			(1)	
	(1) 50	(2)	10		(3)	20		(4)	40		
		sible perimete	r (in me	ter) of a t	rectang	gle of a	rea 100 m ²	2 is :			
	_	(2)	10		(3)	20		(4)	40		
	(1) 50	(-)	10		(-)		un tikou	108/60	10		19.
									Part I Tomate	A State	
15.	n=25 மற்ற				ШПЦ	பரல			ш од н с		
	மாறி X-ன் த	ட்ட விலக் கத்						121-111.01	-	-(1)	
	(1) 2	(4)	6	(C.				(4)		1.0	
	A random va	riable X has bir	nomial d	istributio	on with	n=25	and $p = 0$.	8, then	the stan	dard	
	deviation of >	(is:						-			
	(1) 2	(2)	6		(3)	4	: ei =	(4)	ag antes	· 伊林人士	
	()										
16.	$3x^2 + by^2 + 4b$	$r - 6by + b^2 = 0$) என்ற	வட்டத்	தின் அ	ஆரம் :					
10.	5x + 0y 140.		5	(t) (t)			(2)	in	10	(E)	
	(1) $\sqrt{11}$	(2)	1		(3)			(4)	√10		
	The radius of	the circle $3x^2$	$^2+by^2+$	4bx – 6bj	$y + b^2 =$	=0 is :					
							la ne construir cara	.(4)	$\sqrt{10}$	orla -	110
	(1) √11	ph I digger a	10.0	So. pl1111_		ST Report	pungana (1	1.8 M. L		selo.	* 2 cr
						•	•	. ,	.	•	
17.	x + 2y + 3z + 7	்=0 மற்றும்	2x+4y	+6z+7=	=0	े जा क	தளங்களு	हुरुख	துடைப		
	தொலைவு :					1. 15			1.1		
	தொலைவு : (1) <u>7</u> 2√2		F	The star of	17	7			5		
	(1) $\frac{7}{-7}$	(2)	<u></u>		(3)	<u>/</u>	- 19 A	(4)	<u>\/</u>		
	C10024 9 110340	and the second sec								o an t	
	The distance	between the p	planes x	+2y+3x	z + 7 =	0 and	2x+4y+6	6z + 7 =	=0 is :		
										11.1	
	(1) $\frac{7}{2\sqrt{2}}$	(2)	- 17		(3)	~		(4)	<u><u>v</u>/</u>	154	
	2√2		2√2	27 448		2			2	and a	
								r 0		/ m	0
В								[தி	ருப்புக ,	/ Turn	over
			4								
					GREE	EN GA	RDEN M	ATRIC	. HR. S	EC. S	СНОО

18.
$$(AB)^{-1} = \begin{bmatrix} 12 & -17 \\ -19 & 27 \end{bmatrix}$$
 uppgib $A^{-1} = \begin{bmatrix} 1 & -1 \\ -2 & 3 \end{bmatrix}$ eraflet, $B^{-1} = \begin{bmatrix} 1 & -17 \\ 2 & 1 \end{bmatrix}$
If $(AB)^{-1} = \begin{bmatrix} 12 & -17 \\ -19 & 27 \end{bmatrix}$ and $A^{-1} = \begin{bmatrix} 1 & -1 \\ -2 & 3 \end{bmatrix}$, then $B^{-1} = \begin{bmatrix} 1 & -17 \\ -3 & 2 \end{bmatrix}$ (2) $\begin{bmatrix} 2 & -5 \\ -3 & 8 \end{bmatrix}$ (3) $\begin{bmatrix} 8 & 5 \\ 3 & 2 \end{bmatrix}$ (4) $\begin{bmatrix} 3 & 1 \\ 2 & 1 \end{bmatrix}$
19. $\begin{bmatrix} 8 & -5 \\ -3 & 2 \end{bmatrix}$ (2) $\begin{bmatrix} 2 & -5 \\ -3 & 8 \end{bmatrix}$ (3) $\begin{bmatrix} 8 & 5 \\ 3 & 2 \end{bmatrix}$ (4) $\begin{bmatrix} 3 & 1 \\ 2 & 1 \end{bmatrix}$
19. $\begin{bmatrix} 3 & -5 \\ -3 & 2 \end{bmatrix}$ (2) $\begin{bmatrix} 2 & -5 \\ -3 & 8 \end{bmatrix}$ (3) $\begin{bmatrix} 7 \\ 2 & 2 \end{bmatrix}$ (4) $\begin{bmatrix} 3 & 1 \\ 2 & 1 \end{bmatrix}$
19. $\begin{bmatrix} 2 \\ 3 \\ \sqrt{4-9x^2} \end{bmatrix}$ (4) $\frac{\pi}{4}$
The value of $\int \frac{4x}{\sqrt{4-9x^2}}$ is:
(1) π (2) $\frac{\pi}{6}$ (3) $\frac{\pi}{2}$ (4) $\frac{\pi}{4}$
20. $\frac{dx}{dy} + \frac{dy}{dx} = 0$ erafing expansional explorition in the probability of the pro

Note :

பகுதி – II / PART - II

- எவையேனும் ஏழு வினாக்களுக்கு விடையளிக்கவும். 7x2=14 குறிப்பு : (i)
 - வினா எண் 30 –க்கு கண்டிப்பாக விடையளிக்கவும். (ii) Answer any seven questions. (i)

ne ton vi a Ante-y2 - St. eak slate f

 $\int_{-\infty}^{\infty} \frac{dx}{dx} = \frac{1}{2} \int_{-\infty}^{\infty} \frac{dx}{dx} = \frac{1}{2} \int_{-\infty}^{\infty} \frac{dx}{dx} = \frac{1}{2} \int_{-\infty}^{\infty} \frac{dx}{dx}$

"Rolling of

Question number 30 is compulsory. (ii)

21.
$$\left(\frac{1+i}{1-i}\right)^3 - \left(\frac{1-i}{1+i}\right)^3 = -2i$$
 என நிரூபிக்க.

Prove that
$$\left(\frac{1+i}{1-i}\right)^3 - \left(\frac{1-i}{1+i}\right)^3 = -2i$$
.

- (1+i) (1+2i) (1+ni)=x+iy எனில் 2·5·10· (1+n²)=x²+y² என நிறுவுக. 22. If (1+i)(1+2i) (1+ni) = x + iy, then prove that $2 \cdot 5 \cdot 10^{-1}$ $(1+n^2) = x^2 + y^2$. A. A. S. Mrs. M. M. Walks
- $\sin^{-1}\left[\sin\left(\frac{5\pi}{4}
 ight)
 ight]$ -ன் மதிப்பு காண்க. 23. an equation of the comfly of paralesis. We day, where is is an arrange Find the value of $\sin^{-1}\left[\sin\left(\frac{5\pi}{4}\right)\right]$. பலக்குத்தாகு முக கில்ல வருத்றது பயரு உரியை ம் பெயலை கண்டியி
- $2\hat{i}+\hat{j}-\hat{k}$ என்னும் விசை ஆதிப்புள்ளி வழியாகச் செயல்படுகிறது எனில், 24. (2, 0, –1) என்ற புள்ளியைப் பொறுத்து அவ்விசையின் முறுக்குத் திறனின் எண்ணளவு மற்றும் திசைக் கொசைன்களைக் காண்க. Find the magnitude and the direction cosines of the torque about the point (2, 0, -1) of a force $2\hat{i} + \hat{j} - \hat{k}$, whose line of action passes through the origin. [திருப்புக / Turn over B

GREEN GARDEN MATRIC. HR. SEC. SCHOOL Perundurai R.S. PH: 9486379461, 8344933377

ATT SALEND SETT -

15

- 25. $f(x) = x + \frac{1}{x}, x \in \left[\frac{1}{2}, 2\right]$ என்ற சார்பிற்கு $\left(\frac{1}{2}, 2\right)$ என்ற இடைவெளியில் ரோலின் தேற்றத்தை நிறைவுச் செய்யும் மதிப்பைக் காண்க. Find the value in the interval $\left(\frac{1}{2}, 2\right)$ satisfied by the Rolle's theorem for the function $f(x) = x + \frac{1}{x}, x \in \left[\frac{1}{2}, 2\right]$
- 26. $f(x) = x^2 + 3x$ என்ற சார்பிற்கு x = 2, dx = 0.1 எனும் போது df -ஐ மதிப்பிடுக. For the function $f(x) = x^2 + 3x$, calculate the differential df when x = 2 and dx = 0.1.

27.
$$\int_{0}^{\frac{\pi}{2}} \frac{f(\sin x)}{f(\sin x) + f(\cos x)} \, \mathrm{d}x = \frac{\pi}{4}$$
 என நிறுவுக.

Prove that
$$\int_{0}^{\frac{\pi}{2}} \frac{f(\sin x)}{f(\sin x) + f(\cos x)} \, dx = \frac{\pi}{4}$$

- 28. y²=4ax எனும் பரவளையத் தொகுதியின் வகைக்கெழுச் சமன்பாட்டைக் காண்க. இங்கு 'a' என்பது மாறத்தக்க மாறிலி அல்லது ஏதேச்சை மாறிலி ஆகும். Find the differential equation of the family of parabolas y²=4ax, where 'a' is an arbitrary constant.
- 29. ஓர் இயற்கணித அமைப்பில் சமனி உறுப்பு இருக்கும் எனில் அது ஒருமைத்தன்மை வாய்ந்தது - என நிறுவுக. Prove that the identity element is unique if it exists.

30. முனை (2, 1) மற்றும் (1, 3) என்ற புள்ளி வழியாக செல்வதும், இடப்பக்கம் திறப்பு உடையதுமான பரவளையத்தின் சமன்பாடு காண்க. Find the equation of the parabola if the curve is open leftward, vertex is (2, 1) and passing through the point (1, 3).

Free that $\left(\frac{1+i}{1-i}\right)^2 - \left(\frac{1-i}{1-i}\right)^2 = -2i$

21.

பகுதி – III / PART - III குறிப்பு : (i) எவையேனும் ஏழு வினாக்களுக்கு விடையளிக்கவும். 7x3=21

athor(ii) வினா எண் 40 –க்கு கண்டிப்பாக விடையளிக்கவும். பாக நில் குண்டிப்பாக விடையளிக்கவும். பாக கிறுக்கு கள் க off care and a second and a second se

(ii) Question number 40 is compulsory.

- 31. $A = \begin{bmatrix} 2 & 9 \\ 1 & 7 \end{bmatrix}$ and $(A^{T})^{-1} = (A^{-1})^{T}$ and $\beta = \beta = 0$.
 - If $A = \begin{bmatrix} 2 & 9 \\ 1 & 7 \end{bmatrix}$ then prove that $(A^T)^{-1} = (A^{-1})^T$.
- 32. p என்பது ஒரு மெய்யெண் எனில், $4x^2 + 4px + p + 2 = 0$ எனும் சமன்பாட்டின் மூலங்களின் தன்மையை p -ன் அடிப்படையில் ஆராய்க.

If p is real, discuss the nature of the roots of the equation $4x^2 + 4px + p + 2 = 0$, in terms of p.

	5	5	ſ.	1 5	Ĩ	To and the second second
Not i	all	-iP	20	<u></u>		(1

33. ஒரு கான்கிரீட் பாலம் பரவளைய வடிவில் உள்ளது. சாலையின்மேல் உள்ள பாலத்தின் நீளம் 40 மீ மற்றும் அதன் அதிகபட்ச உயரம் 15 மீ எனில் அந்த பரவளைய வளைவின் சமன்பாடு காண்க. முனையினை (0, 0) என எடுத்துக் கொள்க.

A concrete bridge is designed as a parabolic arch. The road over bridge is 40 m long and the maximum height of the arch is 15 m. Write the equation of the parabolic arch. Take (0, 0) as the vertex.

B

[திருப்புக / Turn over

34. (-5, 7, -4) மற்றும் (13, -5, 2) என்ற புள்ளிகள் வழியாகச் செல்லும் நேர்க்கோட்டின் வெக்டர் மற்றும் கார்டீசியன் சமன்பாடுகளைக் காண்க. மேலும், இந்த நேர்க்கோடு xy -தளத்தை வெட்டும் புள்ளியைக் காண்க.

Find the Vector and Cartesian equations of a straight line passing through the points (-5, 7, -4) and (13, -5, 2). Find the point where the straight line crosses the xy - plane.

position in where 40 is computering

35. f(x)=x^{4/5}(x−4)² என்ற சார்பின் நிலைப்புள்ளி எண்களைக் (x -ன் மதிப்புகள்) காண்க.

Find the critical numbers (only x values) of the function $f(x) = x^{\frac{4}{5}} (x-4)^2$.

36. $U = log(x^3 + y^3 + z^3)$, எனில் $\frac{\partial U}{\partial x} + \frac{\partial U}{\partial y} + \frac{\partial U}{\partial z} - \mathfrak{B}$ காண்க.

If $U = \log(x^3 + y^3 + z^3)$ then find $\frac{\partial U}{\partial x} + \frac{\partial U}{\partial y} + \frac{\partial U}{\partial z}$.

37.

00.) சார்பானது	
	2	3	4	5	6	
$\begin{array}{c c} X & I \\ \hline \end{array}$	2k	6k	5k	6k	10k	

எனில் P(2 < X < 6) -ன் மதிப்புக் காண்க.

A random variable X has the following probability mass function :

	1	2	3	4	5	6	
X	$\frac{1}{k}$	2k	6k	5k	6k	10k	
P(X=x)			The state of the	4.6	119		

then find P(2 < X < 6).

GREEN GARDEN MATRIC. HR. SEC. SCHOOL Perundurai R.S. PH: 9486379461, 8344933377

B. and (march &)

38. X என்ற தொடர் சமவாய்ப்பு மாறி

 $f(x) = \begin{cases} kx \ (1-x)^{10}, \ 0 < x < 1\\ 0, \ Log \end{cases}$

SECOND OF THE SUPPLY

என வரையறுக்கப்படின், k –ன் மதிப்பினைக் காண்க.

Let X be a continuous random variable and f(x) is defined as :

land i e i e n dendu den de e i e i entra

 $f(x) = \begin{cases} kx \ (1-x)^{10}, \ 0 < x < 1\\ 0, \ \text{otherwise} \end{cases}$

find the value of k.

39. p → q ≡ ¬p ∨ q என நிறுவுக. പറ്റില്ലാം പ്രിച്ചായ പ്രാപ്തം പ്രംഘം ക്രിസ്.

Prove that $p \rightarrow q \equiv \neg p \lor q$.

40. கொடுக்கப்பட்ட இரு கோடுகள் $rac{x-x_1}{l_1}=rac{y-y_1}{m_1}=rac{z-z_1}{n_1}$ மற்றும்

 $\frac{x-x_2}{l_2} = \frac{y-y_2}{m_2} = \frac{z-z_2}{n_2}$ ஒரு தளத்தின் மீது அமையுமானால் அத்தளத்தின்

in the should be reading when the said to be statento, en

கார்டீசியன் சமன்பாட்டினை எத்தனை வழிகளில் காணலாம் ? வழிகளை கூறவும்.

If the lines $\frac{x-x_1}{l_1} = \frac{y-y_1}{m_1} = \frac{z-z_1}{n_1}$ and $\frac{x-x_2}{l_2} = \frac{y-y_2}{m_2} = \frac{z-z_2}{n_2}$ lie on the same plane, then write the number of ways to find the Cartesian equation of the above plane and explain in detail.

[திருப்புக / Turn over

GREEN GARDEN MATRIC. HR. SEC. SCHOOL Perundurai R.S. PH: 9486379461, 8344933377

B

1

பகுதி – IV / PART - IV இவர்ப்பாண்டுகள்கும் என்றல் ...85

.

AND A CONTRACTOR

41. ((a) பின்வரும் நேரியச் சமன்பாட்டுத் தொகுப்பானது ஒருங்கமைவு உடையதா
என்பதை தர முறையில் ஆராய்க.

$$x-y+z=-9$$

 $2x-y+z=4$
 $3x-y+z=6$
 $4x-y+2z=7$
அல்லது
((a)) $2\cos \alpha = x + \frac{1}{x}$ மற்றும் $2\cos \beta = y + \frac{1}{y}$ எனில்
(i) $\frac{x^m}{y^n} - \frac{y^n}{x^m} = 2i \sin(m\alpha - n\beta)$
(ii) $x^m y_-^n + \frac{1}{x^m y^n} = 2\cos(m\alpha + n\beta)$ என நிறுவுக.
(a) Test the consistency of the following system of linear equations by rank method.
 $x-y+z=-9$
 $2x-y+z=4$
 $3x-y+z=6$
 $4x-y+2z=7$
OR
(b) If $2\cos \alpha = x + \frac{1}{x}$ and $2\cos \beta = y + \frac{1}{y}$, show that :
(i) $\frac{x^m}{y^n} - \frac{y^n}{x^m} = 2i \sin(m\alpha - n\beta)$
(ii) $x^m y^n + \frac{1}{x^m y^n} = 2\cos(m\alpha + n\beta)$
(iii) $x^m y^n + \frac{1}{x^m y^n} = 2\cos(m\alpha + n\beta)$

PH: 9486379461, 8344933377

(அ) $\cos x$ -ன் வரைபடத்தை [0, π] என்ற இடைவெளியிலும் மேலும் $\cos^{-1}x$ -ன் 42. வரைபடத்தை [–1, 1] என்ற இடைவெளியிலும் வரைக.

அல்லது

(ஆ)(1, 1),(2, -1) மற்றும் (3, 2) என்ற மூன்று புள்ளிகள் வழிச்செல்லும் வட்டத்தின் சமன்பாடு காண்க.

Draw the graph of cosx in $[0, \pi]$ and cos⁻¹ x in [-1, 1]. (a)

OR tring out classic planets the paint

Find the equation of the circle passing through the points (1, 1), (2, -1) and (b) (3, 2).

(அ) தரைமட்டத்திலிருந்து 7.5 மீ உயரத்தில் தரைக்கு இணையாகப் பொருத்தப்பட்ட 43. ஒரு குழாயிலிருந்து வெளியேறும் நீர் தரையைத் தொடும் பாதை ஒரு பரவளையத்தை ஏற்படுத்துகிறது. மேலும் இந்தப் பரவளையப் பாதையின் லாக முனை குழாயின் வாயில் அமைகிறது. குழாய் மட்டத்திற்கு 2.5 மீ கீழே நீரின் வாய்வானது குழாயின் முனை வழியாகச் செல்லும் நிலை குத்துக் கோட்டிற்கு 3 மீ தூரத்தில் உள்ளது எனில் குத்துக் கோட்டிலிருந்து எவ்வளவு தூரத்திற்கு அப்பால் நீரானது தரையில் விழும் என்பதைக் காண்க. and Belleven creeks in house steps in his second of the

வகைங்க எங்கதுமைக்கு நடிக்கி அல்லது. குண் குறிக்

is make partialing radia adduction Gaussia atom (ஆ) வெக்டர் முறையில் cos(α+β)=cosαcosβ−sinαsinβ என நிறுவுக.

Assume that water issuing from the end of a horizontal pipe, 7.5 m above the (a) ground, describes a parabolic path. The vertex of the parabolic path is at the end of the pipe. At a position 2.5 m below the line of the pipe, the flow of water has curved outward 3 m beyond the vertical line through the end of the pipe. How far beyond this vertical line will the water strike the ground ?

is to its monitup at fel ferentiar at the instance of mercus remeatly. OR

(b) By vector method, prove that, $\cos(\alpha + \beta) = \cos\alpha \cos\beta - \sin\alpha \sin\beta$.

[திருப்புக / Turn over

GREEN GARDEN MATRIC. HR. SEC. SCHOOL Perundurai R.S. PH: 9486379461, 8344933377

1. 2. 2.

B

44. (அ) (0, 1, -5) என்ற புள்ளி வழிச் செல்லும் $\vec{r} = (\hat{i}+2\hat{j}-4\hat{k}) + s(2\hat{i}+3\hat{j}+6\hat{k})$ மற்றும் $\vec{r} = (\hat{i}-3\hat{j}+5\hat{k}) + t(\hat{i}+\hat{j}-\hat{k})$ என்ற கோடுகளுக்கு இணையாக உள்ளது மான தளத்தின் வெக்டர் மற்றும் கார்டீசியன் சமன்பாடுகளைக் காண்க.

அல்லது

(ஆ) மதிப்பிடுக :
$$\int_{-\pi}^{\pi} \frac{\cos^2 x}{1 + a^x} dx$$

(a) Find the vector and Cartesian equation of the plane passing through the point (0, 1, -5) and parallel to the straight lines

$$= (\hat{i}+2\hat{j}-4\hat{k}) + s(\hat{2}\hat{i}+3\hat{j}+6\hat{k}) \text{ and } \overrightarrow{\mathbf{r}} = (\hat{i}-3\hat{j}+5\hat{k}) + t(\hat{i}+\hat{j}-\hat{k})$$

OR

(b) Evaluate : $\int_{-\pi}^{\pi} \frac{\cos^2 x}{1 + a^x} dx$

-)

В

45. (அ) வட திசையிலிருந்து ஒரு செங்கோண சந்திப்பை அணுகும் ஒரு காவல்துறை வாகனம் வேகமாகச் சென்று திரும்பி கிழக்கு நோக்கிச் செல்லும் ஒரு மகிழுந்தை துரத்துகிறது. சாலை சந்திப்பின் வடக்கே 0.6 கி.மீ. தொலைவில் காவல் துறையின் வாகனமும் கிழக்கே 0.8 கி.மீ. தொலைவில் மகிழுந்தும் உள்ள பொழுது, மின்காந்த அலைக் கருவியின் துணை கொண்டு காவல்துறை தங்களது வாகனத்திற்கும் மகிழுந்துக்கும் இடைப்பட்ட தூரம் மணிக்கு 20 கி.மீ. வீதத்தில் அதிகரிக்கிறது எனத் தீர்மானிக்கின்றனர். காவல்துறை வாகனம் மணிக்கு 60 கி.மீ. வேகத்தில் நகர்கிறது எனில் மகிழுந்தின் வேகம் என்ன ?

அல்லது

- (ஆ) y = | cosx | என்ற வளைவரை x அச்சு, கோடுகள் x = 0 மற்றும் x = π ஆகியவற்றால் அடைபடும் அரங்கத்தின் பரப்பைக் காண்க.
- (a) A police jeep, approaching an orthogonal intersection from the northern direction, is chasing a speeding car that has turned and moving straight east. When the jeep is 0.6 km north of the intersection and the car is 0.8 km to the east, the police determine with a radar that the distance between the jeep and the car is increasing at 20 km/hr. If the jeep is moving at 60 km/hr at the instant of measurement, what is the speed of the car ?

OR

(b) Find the area of the region bounded by x-axis, the curve $y = |\cos x|$, the lines x=0 and $x=\pi$.

GREEN GARDEN MATRIC. HR. SEC. SCHOOL Perundurai R.S. PH: 9486379461, 8344933377

állið ar sem til til samerfallegi úð massi (1844) tangarð för still sá meydankamann, strög

46. (அ) பரப்பளவு 196 சதுர அலகுகள் கொண்ட ஒரு சதுர தகட்டினை அதன் ஒவ்வொரு மூலையிலும் சமமான சிறு சதுரங்களை நீக்கி, மடித்து ஒரு பெட்டியாக மாற்றப்படுகிறது. பெட்டியின் கன அளவு உச்சமாக இருக்க வேண்டுமாயின் வெட்டி நீக்கப்பட்ட சதுரத்தின் பக்கத்தின் அளவு 7/3 என நிரூபிக்க.

அல்லது

(ஆ) நிறை M உடைய ஒரு தானியங்கி இயந்திரத்தின் இயக்கியால் உருவாக்கப்படும் மாறாத விசை F எனில் அதனுடைய திசைவேகம் V என்பது M $rac{\mathrm{dV}}{\mathrm{dt}}$ = F – kV எனும் சமன்பாட்டால் குறிக்கப்படுகிறது. k என்பது மாறிலியாகும். t=0 எனும்

போது V=0 எனில் V = $\frac{F}{k}\left(1-e^{\frac{-\kappa t}{M}}\right)$ என நிரூபிக்க.

(a) A square shaped thin material with area 196 sq. units to make into an open box by cutting small equal squares from the four corners and folding the sides upward.

Prove that the length of the side of a removed square is $\frac{7}{3}$ when the volume of the box is maximum.

OR

(b) If F is the constant force generated by the motor of an automobile of mass M, its velocity V is given by $M\frac{dV}{dt} = F - kV$, where k is a constant. Prove that

. . .

$$V = \frac{F}{k} \left(1 - e^{\frac{-kt}{M}}\right)$$
 when t=0 and V=0.

[திருப்புக / Turn over

GREEN GARDEN MATRIC. HR. SEC. SCHOOL Perundurai R.S. PH: 9486379461, 8344933377

B

47.

(அ) ஒரு துப்பறிவாளர் புலன் விசாரணையின் போது, ஒருவரின் உயிரற்ற உடலை சரியாக பிற்பகல் 8 மணிக்கு காண்கிறார். முன்னெச்சரிக்கையாக துப்பறிவாளர் அவ்வுடலின் வெப்பநிலையை அளந்து 70°F எனக் குறித்துக் கொள்கிறார். 2 மணி நேரம் கழித்து அந்த உடலின் வெப்பநிலை 60°F ஆக இருப்பதைக் காண்கிறார். உடல் இருந்த அறையின் வெப்பநிலை 50°F ஆகும், மற்றும் இறப்பதற்கு முன்பு அந்நபரின் உடல் வெப்பநிலை 98.6°F எனில், அந்நபர் இறந்த நேரம் பிற்பகல் 5 மணி 26 நிமிடம் என நிரூபிக்க (தோராயமாக).

 $\left\lceil \frac{\log(2.43)}{\log(2)} \simeq 1.28 \right\rceil$

அல்லது

- (ஆ) மூன்று சீரான நாணயங்கள் ஒரு முறை சுண்டப்படுகின்றன. தலைகளின் எண்ணிக்கை நிகழ்விற்கு, நிகழ்தகவு நிறை சார்பு, சராசரி மற்றும் பரவற்படி காண்க. மேலும் ஈருறுப்பு பரவல் மூலம் இவற்றினை சோதிக்க.
- (a) In an investigation, a corpse was found by a detective at exactly 8 p.m. Being alert, the detective also measured the body temperature and found it to be 70°F. Two hours later, the detective measured the body temperature again and found it to be 60°F. If the room temperature is 50°F, and assuming that the body temperature of the person before death was 98.6°F, prove that the time of death

is 5.26 p.m. (5 hrs 26 minutes) (app.). $\frac{\log(2.43)}{\log(2)} \simeq 1.2$

OR

(b) Three fair coins are tossed once. Find the probability mass function, mean and variance for number of heads occurred. Verify the results by binomial distribution.

-000-

GREEN GARDEN MATRIC. HR. SEC. SCHOOL Perundurai R.S. PH: 9486379461, 8344933377

mil may billion a 12 months (Jac)